



This discussion paper is/has been under review for the journal Solid Earth (SE).  
Please refer to the corresponding final paper in SE if available.

# New zircon data supporting models of short-lived igneous activity at 1.89 Ga in the western Skellefte District, central Fennoscandian Shield

**P. Skyttä<sup>1</sup>, T. Hermansson<sup>2</sup>, J. Andersson<sup>3</sup>, and P. Weihed<sup>1</sup>**

<sup>1</sup>Division of Geosciences, Luleå University of Technology, 97187 Luleå, Sweden

<sup>2</sup>Boliden Mineral AB, 93681 Boliden, Sweden

<sup>3</sup>Geological Survey of Sweden, P.O. Box 670, 75128 Uppsala, Sweden

Received: 15 March 2011 – Accepted: 25 March 2011 – Published: 1 April 2011

Correspondence to: P. Skyttä (pietari.skytta@ltu.se)

Published by Copernicus Publications on behalf of the European Geosciences Union.

**SED**

3, 355–383, 2011

**New zircon data supporting models of short-lived igneous activity at 1.89 Ga**

P. Skyttä et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

## Abstract

New U-Th-Pb zircon data (SIMS) from three intrusive phases of the Palaeoproterozoic Viterliden intrusion in the western Skellefte District, central Fennoscandian Shield, dates igneous emplacement in a narrow time interval at about 1.89 Ga. A locally occurring quartz-plagioclase porphyritic tonalite, here dated at  $1889 \pm 3$  Ma, is, based on the new age data and field evidence, considered the youngest of the intrusive units. This supports an existing interpretation of its fault-controlled emplacement after intrusion of the dominating hornblende-tonalite units, in this study dated at  $1892 \pm 3$  Ma. The Viterliden magmatism was synchronous with the oldest units of the Jörn type early-orogenic intrusions in the eastern part of the district (1.89–1.88 Ga; cf. Gonzàles Roldán, 2010). A U-Pb zircon age for a felsic metavolcanic rock from the hanging-wall to the Kristineberg VMS deposit, immediately south of the Viterliden intrusion, is in this study constrained in the 1.89–1.88 Ga time interval. It provides a minimum age for the Kristineberg ore deposit and suggests contemporaneous igneous/volcanic activity throughout the Skellefte District. Furthermore, it supports the view that the Skellefte Group defines a laterally continuous belt throughout this “ore district”. Tentative correlation of the  $1889 \pm 3$  Ma quartz-plagioclase porphyritic tonalite with the Kristineberg “mine porphyry”, which cuts the altered ore-hosting metavolcanic rocks, further constrain the minimum age for ore deposition at  $1889 \pm 3$  Ma. Based on the new age determinations, the Viterliden intrusion may equally well have intruded into, or locally acted as a basement for the ore-hosting Skellefte Group volcanic rocks.

## 1 Introduction

The Skellefte District (Fig. 1) is one of the most important mining districts in northern Europe with numerous VMS deposits and a large potential for future discoveries (Carranza and Sadeghi, 2010). The Kristineberg mine is located in the western part of the district. It is the largest past and present VMS mine in the district, with a

## New zircon data supporting models of short-lived igneous activity at 1.89 Ga

P. Skyttä et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

total production of 26.5 Mt ore, grading 1.05 Cu %, 3.56 Zn %, 0.24 Pb %,  $1.31 \text{ g t}^{-1}$  Au,  $38 \text{ g t}^{-1}$  Ag, and 25.6% S, from the start of production in 1940 to the end of year 2010.

The deposit is hosted by felsic to intermediate metavolcanic rocks suggested to be part of the ore hosting, 1.89–1.88 Ga Skellefte Group that occurs throughout the Skellefte

5 District (cf. Allen et al., 1996; Kathol and Weiher, 2005). The ore-hosting metavolcanic rocks structurally overlie the composite, pre-tectonic  $\sim 1.90$  Ga Viterliden intrusion (Bergström et al., 1999; Skyttä et al., 2010), both occurring in the core of a regional-scale antiformal structure (Fig. 1; Skyttä et al., 2009). Previous geochronological work in the Skellefte District has been focused on the metavolcanic and granitoid rocks of

10 the eastern and central parts (Billström and Weiher, 1996; Lundström and Antal, 2000; Weiher et al., 2002; González Roldán, 2010). Apart from the composite Viterliden intrusion dated at  $1907 \pm 13$  Ma by Bergström et al. (1999), age data from the western part of the Skellefte District is lacking and the time scale of volcanic activity is unknown. Correlation of the Kristineberg volcanic and intrusive units in the west with the

15 ore-bearing Skellefte Group volcanic, and early-orogenic calc-alkaline intrusive units in the other parts of the Skellefte District, requires control over the timing of magmatism across the district. Furthermore, temporal relationships between intrusive and volcanic events are needed to indirectly constrain the age of the VMS mineralization, and to better understand the crustal-scale accretionary processes during the Svecokarelian orogeny.

20 This study presents new U-Th-Pb zircon data from four different igneous units in the Kristineberg area in the western part of the Skellefte District: three compositionally different intrusive units of the composite Viterliden intrusion and one volcanic unit within the stratigraphic hanging-wall to the Kristineberg deposit. Besides constraining the emplacement history of the composite intrusion, dating several intrusive units from 25 a geographically small area aims at investigating the consistency of igneous zircon crystallization ages within different magmatic components of this plutonic complex. The latter is especially important because of the relatively old published age of the Viterliden intrusion with respect to the other early-orogenic intrusive units in the district (Wilson et

## New zircon data supporting models of short-lived igneous activity at 1.89 Ga

P. Skyttä et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

al., 1987; Weiher and Schöberg, 1991; Lundström et al., 1997; Bergström et al., 1999; Weiher et al., 2002; Gonzàles Roldán, 2010). Dating the metavolcanic rock aims at correlating the volcanic units in different parts of the Skellefte District, and at providing an estimate for the minimum age of the mineralization of the Kristineberg deposit. The obtained age data will be interpreted and discussed with respect to the evolution of igneous activity in the Skellefte District, with special emphasis on the timing of VMS mineralization at Kristineberg.

## 2 Geological overview

### 2.1 Geological and structural setting

10 The bedrock of the Skellefte District is composed of 1.95–1.85 Ga Palaeoproterozoic Svecofennian supracrustal and associated intrusive rocks that were deformed and metamorphosed during the Svecokarelian orogeny at 1.87–1.80 Ga (Weiher et al., 2002). The majority of models for the crustal evolution of the Skellefte District suggest that it is a remnant of a volcanic arc accreted towards the Karelian craton in

15 the NE (Hietanen, 1975; Gaál, 1990; Weiher et al., 1992). However, an alternative interpretation has been presented by Rutland et al. (2001a, b) and Sköld and Rutland (2006), who suggest that the Skellefte District was deposited in a rift setting on the Bothnian Basin metasedimentary rocks (their Robertsfors Group) during an episode of crustal extension related to a contemporaneous active margin located west of the

20 present exposure of Svecofennian rocks. 2.0–1.9 Ga granitoids south of the Skellefte district (Billström and Weiher, 1996) and the Bothnian Basin rocks beneath a N-dipping crustal-scale reflector in the Kristineberg area (Malehmir et al., 2007) have also been suggested to be the basement of the Skellefte District. The contacts of the Skellefte District and the Arvidsjaur Group volcanic rocks in the north, and the Bothnian Basin metasedimentary rocks in the south are not exposed.

### New zircon data supporting models of short-lived igneous activity at 1.89 Ga

P. Skyttä et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

**New zircon data supporting models of short-lived igneous activity at 1.89 Ga**

P. Skyttä et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

The structural evolution of the Skellefte District is controlled by a complex fault pattern developed during early crustal extension (Allen et al., 1996; Bauer et al., 2011). The early normal and related transfer faults were later inverted during crustal shortening (Bauer et al., 2009; Skyttä et al., 2010). The main compression in the Skellefte District was related to ~N-S shortening, which led to dominantly reverse S-block-up faulting, and development of related upright folds with curvilinear fold axes in the central part of the district (Bergman Weiher, 2001; Bauer et al., 2011). In the Kristineberg area, a regional-scale antiform with a variably W-plunging hinge was formed during to the same deformation phase. A maximum age for this event is constrained at ~1.87 Ga by the youngest rock unit it deformed, namely the  $1875 \pm 4$  Ma Vargfors Group (Billström and Weiher, 1996; Bergman Weiher, 2001). Intrusion of the late-orogenic granitoids at  $\leq 1.82$  Ga constrain the minimum age of this event at ~1.82 Ga (Weiher et al., 2002), and cross-cutting relationships between granitoid dykes, deformation fabrics and folding events (Rutland et al., 2001b), and ID-TIMS analyses of monazites southwest from the Skellefte District (Skiöld and Rutland, 2006) tighten the constraints even further to ~1.88–1.85 Ga. Another episode of crustal shortening took place at ~1.80 Ga, and was characterized by ~E-W bulk compression which resulted in reverse faulting along major ~N-S trending shear zones in the central Skellefte District and dextral strike-slip reactivation of the early reverse faults in the Kristineberg area (Bergman Weiher, 2001; Weiher et al., 2002; Skyttä et al., 2010). Metamorphic peak conditions reached partial melting in the south-eastern part of the district, whereas sub-solidus PT-conditions at ~3 kbars and ~600 °C prevailed in the Kristineberg area at ~1.85–1.80 Ga (cf. Kathol and Weiher, 2005).

## 2.2 Lithology

The Skellefte District comprises three main groups of supracrustal rocks and four generations of intrusive rocks (Weiher et al., 2002 and references therein). The supracrustal rocks include the predominantly metavolcanic Skellefte and Arvidsjaur Groups, and the predominantly metasedimentary Vargfors Group. The

## New zircon data supporting models of short-lived igneous activity at 1.89 Ga

P. Skyttä et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

**New zircon data supporting models of short-lived igneous activity at 1.89 Ga**

P. Skyttä et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

reverse dip-slip kinematics, or sub-horizontally when associated with dextral strike-slip kinematics.

The Viterliden meta-intrusion comprises hornblende-tonalites (Fig. 4a), plagioclase porphyritic tonalites (Fig. 4b), granites, quartz-plagioclase porphyritic tonalites (Fig. 4d and e; “mine porphyry” by Årebäck et al., 2005). It also hosts high-strain zones characterized by boudinaged intrusives embedded in a mica-rich, mylonitic matrix. The hornblende-tonalites are medium- and even-grained, and are composed of quartz (qtz), plagioclase (plg), hornblende (hbl), biotite (bt), magnetite (mt), pyrite (py) and sphalerite (sph) ( $\pm$  chlorite (chl),  $\pm$  titanite (tita); totally  $\sim$ 30% mafic minerals). Plagioclase porphyritic tonalites are characterized by large plg-megacrysts surrounded by finer-grained matrix composed of qtz, plg, bt ( $\pm$  muscovite (ms); totally  $\sim$ 15% mafic minerals). Granites display qtz-plg-kfs rich domains separated by thinner, discontinuous domains of bt, ms, and chl (totally  $\sim$ 10% mafic minerals), which gives the rock a streaky appearance. Opaque minerals include mt, py and chalcopyrite (cpy). Quartz-plagioclase porphyritic tonalites contain phenocrysts of qtz and plg in a finer-grained matrix composed of qtz, feldspars (fsp), ms, bt and chl (totally  $\sim$ 10% mica content). The matrix grain size in the southern quartz-plagioclase porphyritic tonalite is significantly larger compared to the “mine porphyry” in the north.

The hornblende-tonalites are volumetrically dominating, whereas the other lithologies are clearly subordinate, in particular the quartz-plagioclase porphyritic tonalites that are associated with E-W to NE-SW trending fault zones only (Fig. 2). Contacts between the different intrusive phases, as well as contacts between the intrusion and the bounding volcanic rocks are generally sheared. For this reason, initial relative age relationships are inaccessible. The Kristineberg hanging-wall rhyolite (Fig. 4c) is fine-grained, contains up to 0.2 mm large qtz- and plg-phenocrysts in a fine-grained matrix of qtz, fsp and bt (totally  $<10\%$  mafic minerals), and have a well developed a SW-plunging lineation defined by elongate bt-aggregates. The hanging-wall rhyolite is associated with the stratigraphically lower of the two ore horizons in the Kristineberg area, the Kristineberg-Kimheden ore horizon (Figs. 2, 3). The

## New zircon data supporting models of short-lived igneous activity at 1.89 Ga

P. Skyttä et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

stratigraphically higher, Hornträsk-Rävlidsmyran-Rävliden ore horizon is located in the upper part of the Skellefte Group volcanic rocks, which is the most common stratigraphic position for VMS deposits in the Skellefte District. Based on alteration patterns, the mine porphyry vs. the ore-hosting metavolcanic rock cross-cutting relationship, and geochemical modelling, Galley and Bailes (unpublished data, 1999) suggested that the development of the lower of the Kristineberg ore horizons was associated with a pre-Viterliden subvolcanic intrusion at depth. In contrast, the upper ore horizon was considered coeval with the emplacement of the Viterliden intrusion into the volcanic pile (Galley and Bailes, unpublished data, 1999).

## 10 3 Geochronology

### 3.1 Sampling and analytical procedures

A total of seven samples were selected for geochronological analyses from the Kristineberg area. The samples were taken both at the surface and from drill cores available in the Boliden Mineral AB drill core archives. They were milled into fine-grained powder using a swing-mill. Heavy mineral separates were obtained using a full size Wilfley water panning table. Magnetic mineral fractions were removed with a hand-magnet. Zircon grains selected for further analytic work were hand-picked using a stereomicroscope. Since all samples are rather poor in zircon, as much as about 10 kg of rock were processed for most samples. Of all seven samples, zircon was only recovered in three meta-intrusive and one metavolcanic rock.

20 Zircons selected for analytical work were mounted on double-faced tape and embedded in transparent epoxy resin together with the 1065 Ma Geostandards zircon 91 500 (Wiedenbeck et al., 1995). The epoxy mount was polished to expose the central parts of the crystals, including the potentially older cores.

25 Back scattered electron (BSE) imaging was used for selection of the location of analytical spots and subsequent re-examination of spot sites after analysis. The

BSE-imaging prior to analysis was done at the Luleå University of Technology in Luleå using a Phillips XL30 electron microscope with LaB6 filament. Post-analysis BSE-imaging was done at the Evolutionary Biology Centre at Uppsala University using a Zeiss Supra 35-VP field emission SEM electron microscope, with a Robinson back scatter detector. Prior to U-Th-Pb analysis, the mount was coated with ca. 30 nm of gold. Secondary Ionisation Mass Spectrometry (SIMS) U-Th-Pb in situ analyses on zircon was carried out using a Cameca IMS 1280 high mass-resolution instrument, at the NORDSIM facility at the Swedish Museum of Natural History in Stockholm. The analytical procedures followed Whitehouse et al. (1999) and Whitehouse and Kamber (2005).

5 The instrument was operated with a spot size less than 25  $\mu\text{m}$ .

All isotopic data are presented in Table 1. Age calculations were done using Iso-plot/Ex (Ludwig, 2003). Ages are reported with 2 sigma errors, except for sample 60.1-pmsk-09, which is reported with 95%-confidence limits. In the figures, and in the discussion, concordia ages are presented without decay constant errors. However, in the section below, age calculations are presented both with and without decay constant errors, for future reference.

10

15

## 3.2 Sample descriptions and U-Pb results

### 3.2.1 Sample I: Viterliden hornblende-tonalite (47.1-pmsk-09)

Zircon was quite abundant in the sample that is dominated by up to 0.6 mm long, euhedral prismatic grains with sharp terminations. The crystals have approximate width/length ratios of 1:3, and are transparent to semi-transparent and colourless to weakly yellowish (light brownish) in colour. Most grains are cracked. The sample also contains a subordinate group of small (up to 150  $\mu\text{m}$ ), rounded and slightly brownish grains. In BSE-images, the zircons typically show broad-banded, simple oscillatory zoning without texturally complex core-rim relationships (Fig. 5, n3448-01ab). Consequently, both the external morphology and the internal textures suggest a well-preserved igneous character of the zircon in this sample (cf. Corfu et al., 2003).

20

25

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

A total of fifteen analyses were obtained in thirteen different crystals. Two analyses are more than 5% discordant (n3448-06b and 13a). Both hit cracks and were excluded from age calculation. The remaining thirteen concordant analyses yield a concordia age (ignoring decay constant errors) of  $1892 \pm 3$  Ma (Fig. 6a;  $\text{MSWD}_{\text{conc.}+\text{equiv.}} = 1.2$ ,

5 probability = 0.24) identical to the weighted average  $^{207}\text{Pb}/^{206}\text{Pb}$  age of  $1891 \pm 3$  Ma ( $\text{MSWD} = 0.86$ , probability = 0.59). The concordia age including decay constant errors is  $1894 \pm 5$  Ma ( $\text{MSWD}_{\text{conc.}+\text{equiv.}} = 1.14$ , probability = 0.28). The well-preserved igneous appearance of the zircon population and the limited spread in the U-Th-Pb data suggests negligible post-igneous crystallisation isotopic disturbance. The concordia age of  $1892 \pm 3$  Ma is interpreted to date igneous crystallisation of the hornblende tonalite.

### 3.2.2 Sample II: Viterliden plagioclase porphyritic tonalite (33.1-pmsk-08)

Processing of the sample gave a moderate yield of zircon. The analytical quality of the population is rather poor and cracks and inclusions (both dark and colourless) are frequent. The crystals are typically subhedral prisms, with rounded outer terminations.

15 They are between 100–200  $\mu\text{m}$  long with aspect ratios of about 1:2. Uncracked domains are clear to semi-transparent, often with a yellow/orange tint. In BSE-images the zircons generally show a weak broad-banded oscillatory zoning, whereas some marginal domains appear more or less unzoned (Fig. 5, n3450-03ab). Some grains 20 display intense oscillatory zoning in specific domains, which are typically cracked and appear more altered (Fig. 5, n3450-21a). Most grains are texturally non-complex. However, some grains contain texturally older core domains, surrounded and cut by texturally younger unzoned or weakly oscillatory zoned zircon (Fig. 5, n3450-05a, 12a). Secondary alteration features in the zircon population typically occur as BSE-dark thin 25 alteration fronts preferentially located along the outer margins of the grains broadly following bands in the zoning of the crystal. These domains are interpreted as poorly crystalline regions, tentatively indicating progressive metamictisation of the grain.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

The low analytical quality of the zircon population made it difficult to locate areas devoid of cracks, inclusions, and BSE-dark altered domains large enough to host an analytical spot. As a consequence, 18 of the totally 32 analytical spots hit cracks, inclusions or straddled the crystal margin-epoxy interface. This resulted in a varying degree of discordance for these analyses (Table 1), which show a more or less complex pattern indicating both ancient and recent Pb-loss. The discordant data were excluded from the age calculation. The remaining 14 concordant analyses were located in domains showing a weak, broad banded BSE-zoning, covering both internal and marginal parts of the crystals. Together the 14 concordant analyses define a concordia age (ignoring decay constant errors) of  $1891 \pm 3$  Ma (Fig. 6b;  $\text{MSWD}_{\text{conc.}+\text{equiv.}} = 1.4$ , probability = 0.082), identical to a weighted average  $^{207}\text{Pb}/^{206}\text{Pb}$  age of the same analyses at  $1892 \pm 4$  Ma ( $\text{MSWD} = 0.89$ , probability = 0.56). The concordia age including decay constant errors is  $1890 \pm 5$  Ma ( $\text{MSWD}_{\text{conc.}+\text{equiv.}} = 1.4$ , probability = 0.086). The  $1891 \pm 3$  Ma concordia age is interpreted to directly date igneous crystallisation of the plagioclase porphyritic tonalite.

### 3.2.3 Sample III: Viterliden quartz-plagioclase porphyritic tonalite (coarse “mine porphyry”; 29.1-pmsk-08)

The zircon population is dominated by prismatic, typically between 100–250  $\mu\text{m}$  long, and more or less euhedral crystals with length/width ratios of 2.5–3. They are semi-transparent light-brown to nearly colourless, with slight orange shades. Cracks and inclusions are common. In BSE-imaging, the crystals typically show an intense, but somewhat blurred oscillatory zoning that in most grains continues throughout the grain all the way to the crystal edge (Fig. 5, n3449-02a, 03a). This is indicative of a single non-complex growth stage.

A total of 27 analyses were made in 25 different crystals. The analytical result is affected by the abundance of cracks and inclusions in the analysed zircon population. 18 out of 27 analyses are between 1–46% discordant. This discordance is

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

directly correlated to the location of the analytical spot hitting cracks or inclusions, or the crystal-epoxy interface (see location of analysed area in Table 1). U contents in un-cracked, inclusion-free domains are between 350–660 ppm. Discordant analyses, where the analytical spot has hit cracks and/or inclusions, may have up to 1000 ppm U and generally also significantly higher amounts of common Pb ( $^{206}\text{Pb}/^{204}\text{Pb}$  ratios often well below 10 000, Table 1). These analyses have been excluded from the age calculation. The remaining nine analyses are concordant and give a concordia age (ignoring the decay constant errors) of  $1889 \pm 3$  Ma (Fig. 6c;  $\text{MSWD}_{\text{conc.}+\text{equiv.}} = 1.4$ , probability = 0.13), identical to a weighted average  $^{207}\text{Pb}/^{206}\text{Pb}$  age of the same analyses calculated at  $1890 \pm 4$  Ma ( $\text{MSWD} = 1.1$ , probability = 0.33). The concordia age including decay constant errors is  $1888 \pm 6$  Ma ( $\text{MSWD}_{\text{conc.}+\text{equiv.}} = 1.4$ , probability = 0.14). The concordia age defined by the nine concordant analyses is interpreted to date igneous crystallisation of the quartz-plagioclase porphyritic tonalite at  $1889 \pm 3$  Ma.

### 3.2.4 Sample IV: Kristineberg hanging-wall rhyolite (60.1-pmsk-09)

About 50 zircons were retrieved from a 10 kg sample of the Kristineberg hanging-wall rhyolite. The crystals are rather small in size, typically short prismatic and more or less euhedral with aspect ratios between 1:2 and 1:3, and maximum lengths of about 150  $\mu\text{m}$ . They are turbid and semi-transparent and cracks and inclusions are common. In BSE-images the zircons are texturally uniform, typically showing a weak broad-banded zoning or are unzoned (Fig. 5, n3447-32b, 22a). The textures suggest a non-complex single stage of zircon growth.

A total of 37 analyses were obtained from the sample. 24 of these are discordant and several of these significantly reversely discordant (Fig. 6d). In contrast to the other three samples, there is no obvious correlation between discordance and location of analytical spot at inclusions, cracks or at across the crystal-epoxy interface. Furthermore, the concordant data points spread too much in age to define a common concordia age. The analyses on this sample were acquired in the same analytical sub-session as

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

---

**New zircon data supporting models of short-lived igneous activity at 1.89 Ga**

P. Skyttä et al.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

the other samples, in which the analytical conditions, the standard calibration, and the obtained data are of high quality. The rhyolite zircons are located in an area relatively close (5 mm) to the margin of the epoxy mount. The sample-dependent analytical problems observed for the Kristineberg rhyolite zircon data, might be caused by analytical disturbance arising from the location of the sample in the sample holder, and not by geological processes.

13 of the 37 analyses are concordant within 2 sigma errors (Table 1). Three of these analyses were discarded from the age calculation. Two of them, since their error ellipses do not cross-cut the concordia line (n3447-10a and 19a), and one because the analysis gives distinctly deviating isotopic ratios, with large errors (n3447-31a). The remaining ten concordant analyses define a concordia age (ignoring decay constant errors) of  $1886 \pm 9$  Ma ( $\text{MSWD}_{\text{conc.}+\text{equiv.}} = 2.0$ , probability = 0.007) and a weighted average  $^{207}\text{Pb}/^{206}\text{Pb}$  age of the same ten analyses calculated at  $1883 \pm 7$  Ma ( $\text{MSWD} = 1.12$ , probability = 0.35). The concordia age including decay constant errors is  $1888 \pm 10$  Ma ( $\text{MSWD}_{\text{conc.}+\text{equiv.}} = 1.9$ , probability = 0.009). The igneous crystallisation of the Kristineberg Rhyolite is here dated at between 1.89–1.88 Ga. Calculation of a more precise age is hampered by sample-specific analytical problems described above.

## 4 Discussion

20 The new ~1.89 Ga U-Pb ages for the three different phases of the composite Viterliden intrusion demonstrate that it was emplaced synchronously with the majority of the pre- to early-orogenic granitoids further east in the Skellefte District (Wilson et al., 1987; Weiher and Schöberg, 1991; Lundström et al., 1997; Weiher et al., 2002; Gonzàles Roldán, 2010). Exceptions are the ~1.91 Ma Björkdal intrusion (Lundström and Antal, 2000) and the younger phases of the Jörn intrusive complex (Gonzàles Roldán, 2010). Of these two, the Björkdal intrusion has a complex history including several zircon-forming events (Lundström and Antal, 2000), and for this reason, it is not clear if it may

---

**New zircon data supporting models of short-lived igneous activity at 1.89 Ga**

P. Skyttä et al.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

**New zircon data supporting models of short-lived igneous activity at 1.89 Ga**

P. Skyttä et al.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

evidence on the age of the “mine porphyry proper”, we tentatively estimate that it was emplaced  $1889 \pm 3$  m.y. ago. If correct, it sets a minimum age for the VMS deposition, which is in agreement with the more loosely-defined minimum age constrained by the hanging-wall rhyolite.

## 5 Conclusions

The early-orogenic magmatism within the Kristineberg area occurred at  $\sim 1.89$  Ga when the Viterliden composite intrusion was emplaced during a period of  $\sim 5$  Ma. The intrusion was coeval with the emplacement of the earliest phases of the Jörn GI-type intrusions further east. The oldest phase of the Viterliden intrusion is a hornblende-tonalite (1892  $\pm 3$  Ma) and the youngest is a quartz-plagioclase porphyritic tonalite (“mine porphyry”; 1889  $\pm 3$  Ma). The emplacement of the latter was controlled by major faults. Volcanism in the Kristineberg area took place at 1.89–1.88 Ga and was contemporaneous with volcanism in the other parts of the Skellefte District. Furthermore, it defines the minimum age for the Kristineberg VMS deposit at  $\geq 1.88$  Ga. However, if the tentative correlation between the dated quartz-plagioclase porphyritic tonalite and the “mine porphyry proper” is correct, the minimum age is constrained even further, at 1889  $\pm 3$  Ma. The age relationships between the volcanic and intrusive units within the Kristineberg area are compatible with the Viterliden intrusion being both the local basement for, and/or intruding into, the ore-hosting Skellefte Group volcanic rocks.

Acknowledgements. We thank Tobias Bauer for assistance in the field and for help in figure preparation. We warmly thank Martin Whitehouse, Lev Ilyinsky and Kerstin Lindén from the Nordsim laboratory for co-operation and help in the SIMS dating related issues. The Nordsim facility is financed and operated under an agreement between the research councils of Denmark, Norway and Sweden, the Geological Survey of Finland and the Swedish Museum of Natural History. This is Nordsim publication # XXX. This work is part of “VINNOVA 4D modelling of the Skellefte District” funded by VINNOVA, Boliden Mineral AB and Lundin Mining, and the “PROMINE” project partially funded by the European Commission under the 7th Framework Programme.

SED

3, 355–383, 2011

New zircon data supporting models of short-lived igneous activity at 1.89 Ga

P. Skyttä et al.

|                                          |                              |
|------------------------------------------|------------------------------|
| <a href="#">Title Page</a>               |                              |
| <a href="#">Abstract</a>                 | <a href="#">Introduction</a> |
| <a href="#">Conclusions</a>              | <a href="#">References</a>   |
| <a href="#">Tables</a>                   | <a href="#">Figures</a>      |
| <a href="#">◀</a>                        | <a href="#">▶</a>            |
| <a href="#">Back</a>                     | <a href="#">Close</a>        |
| <a href="#">Full Screen / Esc</a>        |                              |
| <a href="#">Printer-friendly Version</a> |                              |
| <a href="#">Interactive Discussion</a>   |                              |

## References

Allen, R. L., Weiher, P., and Svenson, S.-Å.: Setting of Zn-Cu-Au-Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte District, Sweden, *Econ. Geol.*, 91, 1022–1053, 1996.

Årebäck, H., Barrett, T. J., Abrahamsson, S., and Fagerström, P.: The Palaeoproterozoic Kristineberg VMS deposit, Skellefte District, northern Sweden, part I: geology, *Miner. Deposita*, 40, 351–367, 2005.

Bauer, T.: Structural and Sedimentological Reconstruction of the Inverted Vargfors Basin – A base for 4D-modelling, Licentiate thesis, Luleå University of Technology, Sweden, 44 pp., 2010.

Bauer, T., Skyttä, P., Weiher, P., and Allen, R.: 3D-modelling of the Central Skellefte District, Sweden, Proceedings of the 10th biennial SGA meeting, Townsville, Australia, 394–396, 2009.

Bauer, T. E., Skyttä, P., Allen, R. L., and Weiher, P.: Syn-extensional faulting controlling structural inversion at the Svecokarelian Craton margin – Insights from the Palaeoproterozoic Vargfors basin, Skellefte mining district, Sweden, *Precambrian Research*, in review, 2011.

Bergman Weiher, J.: Palaeoproterozoic deformation zones in the Skellefte and the Arvidsjaur areas, northern Sweden, in: *Economic Geology Research 1*, edited by: Weiher, P., Sveriges Geologiska Undersökning, C 833, 46–68, 2001.

Billström, K. and Weiher, P.: Age and provenance of host rocks and ores of the Palaeoproterozoic Skellefte District, northern Sweden, *Econ. Geol.*, 91, 1054–1072, 1996.

Bergström, U., Billström, K., and Sträng, T.: Age of the Kristineberg pluton, western Skellefte district, northern Sweden, in: *Radiometric dating results 4*, edited by: Bergman, S., Sveriges geologiska undersökning, C 831, 7–19, 1999.

Carranza, E. J. M. and Sadeghi, M.: Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden), *Ore Geol. Rev.*, 38, 219–241, 2010.

Corfu, F., Hanchar, J. M., Hoskin, P. W. O., and Kinny, P.: Atlas of zircon textures, in: *Zircon, Reviews in Mineralogy and Geochemistry*, vol. 53, edited by: Hanchar, J. M. and Hoskin, P. W. O., Mineralogical Society of America, 468–500, 2003.

Dehghannejad, M., Juhlin, C., Malehmir, A., Skyttä, P., and Weiher, P.: Reflection seismic imaging of the upper crust in the Kristineberg mining area, northern Sweden, *J. Appl.*

SED

3, 355–383, 2011

New zircon data supporting models of short-lived igneous activity at 1.89 Ga

P. Skyttä et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)



Geophys., 71, 125–136, 2010.

Gaál, G.: Tectonic styles of early Proterozoic ore deposition in the Fennoscandian shield, Precambrian Res., 46, 83–114, 1990.

Hietanen, A.: Generation of potassium-poor magmas in the northern Sierra Nevada and the Svecfennian of Finland, J. Res. US Geol. Surv., 3, 631–645, 1975.

Kathol, B. and Weihed, P. (Eds.): Description of regional geological and geophysical maps of the Skellefte District and surrounding areas, Sveriges geologiska undersökning Ba 57, 197 pp., 2005.

Ludwig, K. R.: Isoplot/Ex. 3. A geochronological toolkit for Microsoft Excel, Berkeley Geochronology Center, Special Publication No. 4., 2003.

Lundström, I. and Antal, I.: Bedrock map 23K Boliden, scale 1:50 000, Sveriges geologiska undersökning Ai, 110–113, 2000.

Lundström, I., Vaasjoki, M., Bergström, U., Antal, I., and Strandman, F.: Radiometric age determinations of plutonic rocks in the Boliden area: the Hobergslien granite and the Stavaträsk diorite, in: Radiometric dating results 3, edited by: Lundqvist, T., Sveriges geologika undersökning, C 830, 20–30, 1997.

Malehmir, A., Tryggvason, A., Lickorish, H., and Weihed, P.: Regional structural profiles in the western part of the Palaeoproterozoic Skellefte ore district, northern Sweden, Precambrian Res., 159, 1–18, 2007.

Malehmir, A., Thunehed, H., and Tryggvason, A.: The Paleoproterozoic Kristineberg mining area, northern Sweden: Results from integrated 3D geophysical and geologic modelling, and implications for targeting ore deposits, Geophysics, 74, B9–B22, 2009.

Rutland, R. W. R., Kero, L., Nilsson, G., and Stølen, L. K.: Nature of a major tectonic discontinuity in the Svecfennian province of northern Sweden, Precambrian Res., 112, 211–237, 2001a.

Rutland, R. W. R., Skiöld, T., and Page, R. W.: Age of deformation episodes in the Palaeoproterozoic domain of northern Sweden, and evidence for a pre-1.9 Ga crustal layer, Precambrian Res., 112, 239–259, 2001b.

Skiöld, T.: Implications of new U-Pb zircon chronology to early Proterozoic crustal accretion in northern Sweden, Precambrian Res., 38, 147–164, 1988.

Skiöld, T. and Rutland, R. W. R.: Successive ~1.94 Ga plutonism and ~1.92 Ga deformation and metamorphism south of the Skellefte district, northern Sweden: Substantiation of the marginal basin accretion hypothesis of Svecfennian evolution, Precambrian Res., 148,

---

New zircon data supporting models of short-lived igneous activity at 1.89 Ga

P. Skyttä et al.

---

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Skiöld, T., Öhlander, B., Markkula, H., Widenfalk, L., and Claesson, L. Å.: Chronology of Proterozoic orogenic processes at the Archaean continental margin in northern Sweden, *Precambrian Res.*, 64, 225–238, 1993.

5 Skyttä, P., Hermansson, T., and Bauer, T.: Three Dimensional Structure of the VMS-hosting Palaeoproterozoic Kristineberg Area, Northern Sweden. *Proceedings of the 10th biennial SGA meeting*, Townsville, Australia, 909–911, 2009.

10 Skyttä, P., Hermansson, T., Elming, S.-Å., and Bauer, T.: Magnetic fabrics as constraints on the kinematic history of a pre-tectonic granitoid intrusion, Kristineberg, northern Sweden, *J. Struct. Geol.*, 32, 1125–1136, 2010.

Stacey, J. S. and Kramers, J. D.: Approximation of terrestrial lead isotope evolution by a two-stage model, *Earth Palnet. Sc. Lett.*, 26, 207–221, 1975.

Weiher, P. and Schöberg, H.: Timing of porphyry type mineralizations in the Skellefte District, northern Sweden, *GFF*, 113, 289–294, 1991.

15 Weiher, P., Bergman, J., and Bergström, U.: Metallogeny and tectonic evolution of the early Proterozoic Skellefte District, northern Sweden, *Precambrian Res.*, 58, 143–167, 1992.

Weiher, P., Billström, K., Persson, P.-O., and Bergman Weiher, J.: Relationship between 1.90–1.85 Ga accretionary processes and 1.82–1.80 Ga oblique subduction at the Karelian craton margin, Fennoscandian Shield, *GFF*, 124, 163–180, 2002.

20 Welin, E.: The depositional environment of the Svecofennian supracrustal sequence in Finland and Sweden, *Precambrian Res.*, 35, 95–113, 1987.

Whitehouse, M. J. and Kamber, B. S.: Assigning dates to thin gneissic veins in high-grade metamorphic terranes: a cautionary tale from Akilia, southwest Greenland, *J. Petrol.*, 46, 291–318, 2005.

25 Whitehouse, M. J., Kamber, B., and Moorbath, S.: Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland – a reassessment based on combined ion-microprobe and imaging studies, *Chem. Geol.*, 160, 201–224, 1999.

Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C., and Spiegel, W.: Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analysis, *Geostandard. Newslett.*, 19, 1–23, 1995.

30 Wilson, M. R. Claesson, L.-Å., Sehlstedt, S., Smellie, J. A. T., Aftalion, M., Hamilton, P. J., and Fallick, A. E.: Jörn: An early Proterozoic intrusive complex in a volcanic arc environment, north Sweden, *Precambrian Res.*, 36, 201–225, 1987.

**New zircon data supporting models of short-lived igneous activity at 1.89 Ga**

P. Skyttä et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)



## New zircon data supporting models of short-lived igneous activity at 1.89 Ga

P. Skyttä et al.

## Title Page

Abstract | Introduction

Conclusions | References

## Tables

1

10 of 10

Full Screen / Esc

[Printer-friendly Version](#)

## Interactive Discussion

**Table 1.** SIMS U-Th-Pb zircon data for the intrusive and volcanic rocks dated in this study. Data for point n3448-10a (sample I) is missing as it was planned and marked on the analysis plan, but finally not analyzed.

| Sample <sup>a/</sup><br>spot #                                               | Analysed area       |                         | [Pb] | [U]  | Th <sup>b</sup> | 206Pb   | f <sup>206</sup> Pb <sup>c</sup> | Ratios ± σ |       | Age ± σ (Ma) |       | Disc. %<br>2σ lim. <sup>d</sup> |            |
|------------------------------------------------------------------------------|---------------------|-------------------------|------|------|-----------------|---------|----------------------------------|------------|-------|--------------|-------|---------------------------------|------------|
|                                                                              | textural domain     | location                | ppm  | ppm  | U               | 204Pb   | %                                | 206Pb      | 207Pb | 207Pb        | 206Pb |                                 |            |
|                                                                              |                     |                         |      |      |                 |         |                                  | 238U       | 206Pb | 238U         | 206Pb |                                 |            |
| <b>Sample I: Viterilden Hornblende tonalite (47.1-pmsk-09)</b>               |                     |                         |      |      |                 |         |                                  |            |       |              |       |                                 |            |
| n3448-01a                                                                    | wk osc zon          | cracked                 | 190  | 439  | 0.53            | 65 130  | 0.03                             | 0.3423     | 1.09  | 0.1154       | 0.27  | 1886                            | 5 1898 18  |
| n3448-01b                                                                    | wk osc zon          |                         | 204  | 462  | 0.55            | 152 518 | 0.01                             | 0.3480     | 1.21  | 0.1159       | 0.26  | 1894                            | 9 1925 20  |
| n3448-02a                                                                    | wk osc zon          |                         | 52   | 122  | 0.40            | 206 770 | <0.01                            | 0.3446     | 1.16  | 0.1162       | 0.50  | 1899                            | 9 1909 19  |
| n3448-03a                                                                    | wk osc zon          |                         | 171  | 394  | 0.53            | 225 287 | 0.01                             | 0.3418     | 1.15  | 0.1163       | 0.28  | 1899                            | 5 1895 19  |
| n3448-04a                                                                    | wk osc zon          |                         | 163  | 384  | 0.47            | 47 375  | 0.04                             | 0.3385     | 1.15  | 0.1157       | 0.29  | 1891                            | 5 1880 19  |
| n3448-05a                                                                    | wk osc zon          |                         | 95   | 223  | 0.44            | 190 369 | 0.01                             | 0.3416     | 1.10  | 0.1156       | 0.37  | 1890                            | 7 1895 18  |
| n3448-06a                                                                    | uz inner domain     |                         | 200  | 467  | 0.51            | 68 717  | 0.03                             | 0.3388     | 1.14  | 0.1155       | 0.26  | 1887                            | 5 1881 19  |
| n3448-06b                                                                    | uz outer domain     | cracked                 | 90   | 234  | 0.39            | 25 552  | 0.07                             | 0.3115     | 1.10  | 0.1149       | 0.40  | 1878                            | 7 1748 17  |
| n3448-07a                                                                    | uz inner domain     |                         | 273  | 598  | 0.65            | 218 045 | 0.01                             | 0.3518     | 1.17  | 0.1159       | 0.23  | 1894                            | 4 1943 20  |
| n3448-08a                                                                    | wk osc zon          |                         | 163  | 374  | 0.48            | 155 575 | 0.01                             | 0.3488     | 1.10  | 0.1154       | 0.31  | 1887                            | 5 1929 18  |
| n3448-08b                                                                    | wk osc zon          |                         | 113  | 266  | 0.43            | 206 131 | 0.01                             | 0.3427     | 1.16  | 0.1153       | 0.35  | 1885                            | 6 1900 19  |
| n3448-09a                                                                    | uz inner domain     |                         | 163  | 384  | 0.44            | 249 095 | 0.01                             | 0.3419     | 1.06  | 0.1154       | 0.33  | 1886                            | 6 1896 18  |
| n3448-11a                                                                    | wk osc zon          |                         | 123  | 295  | 0.44            | 126 747 | 0.01                             | 0.3354     | 1.06  | 0.1156       | 0.33  | 1889                            | 6 1865 17  |
| n3448-12a                                                                    | uz outer domain     |                         | 200  | 457  | 0.54            | 282 209 | 0.01                             | 0.3439     | 1.06  | 0.1160       | 0.26  | 1896                            | 5 1906 18  |
| n3448-13a                                                                    | uz sec domain       | cracked                 | 112  | 309  | 0.24            | 63 005  | 0.03                             | 0.3032     | 1.08  | 0.1153       | 0.37  | 1884                            | 7 1707 16  |
| <b>Sample II: Viterilden plagioclase porphyritic tonalite (33.1-pmsk-08)</b> |                     |                         |      |      |                 |         |                                  |            |       |              |       |                                 |            |
| n3450-01a                                                                    | uz outer domain     |                         | 49   | 121  | 0.27            | 100 267 | 0.02                             | 0.3377     | 1.09  | 0.1163       | 0.50  | 1899                            | 9 1875 18  |
| n3450-02a                                                                    | uz outer domain     |                         | 45   | 111  | 0.26            | 15 757  | 0.12                             | 0.3361     | 1.11  | 0.1155       | 0.58  | 1887                            | 10 1868 18 |
| n3450-02b                                                                    | wk zon outer domain | cracked                 | 49   | 128  | 0.24            | 58 176  | 0.03                             | 0.3201     | 1.11  | 0.1148       | 0.56  | 1876                            | 10 1790 17 |
| n3450-03a                                                                    | uz outer domain     |                         | 60   | 144  | 0.33            | 84 446  | 0.02                             | 0.3412     | 1.11  | 0.1167       | 0.48  | 1907                            | 9 1892 18  |
| n3450-03b                                                                    | osc zon core        |                         | 99   | 238  | 0.37            | 106 179 | 0.02                             | 0.3410     | 1.09  | 0.1157       | 0.45  | 1891                            | 8 1892 18  |
| n3450-04a                                                                    | uz margin/osc core  | crystal margin          | 55   | 140  | 0.30            | 50 501  | 0.04                             | 0.3275     | 1.16  | 0.1167       | 0.88  | 1906                            | 16 1826 18 |
| n3450-05a                                                                    | wk zon outer domain |                         | 78   | 195  | 0.32            | 52 019  | 0.04                             | 0.3312     | 1.12  | 0.1156       | 0.62  | 1889                            | 11 1844 18 |
| n3450-06a                                                                    | wk zon core         |                         | 57   | 140  | 0.30            | 61 052  | 0.03                             | 0.3378     | 1.13  | 0.1155       | 0.51  | 1888                            | 9 1876 18  |
| n3450-07a                                                                    | uz margin           | crystal margin          | 56   | 148  | 0.24            | 20 809  | 0.09                             | 0.3165     | 1.10  | 0.1143       | 0.50  | 1868                            | 9 1773 17  |
| n3450-07b                                                                    | uz                  |                         | 66   | 163  | 0.34            | 43 894  | 0.04                             | 0.3340     | 1.07  | 0.1157       | 0.65  | 1891                            | 12 1858 17 |
| n3450-08a                                                                    | wk zon outer domain | cracked                 | 43   | 228  | 0.09            | 4580    | 0.41                             | 0.1599     | 1.10  | 0.1142       | 0.58  | 1868                            | 10 1956 10 |
| n3450-08b                                                                    | wk zon outer domain | cracked, epoxy          | 96   | 747  | 0.12            | 467     | 4.00                             | 0.1070     | 1.21  | 0.1067       | 1.12  | 1744                            | 20 655 8   |
| n3450-09a                                                                    | wk osc zon          | cracked                 | 51   | 141  | 0.26            | 3166    | 0.59                             | 0.3021     | 1.14  | 0.1154       | 0.67  | 1886                            | 12 1702 17 |
| n3450-09b                                                                    | wk osc zon          |                         | 54   | 126  | 0.35            | 41 408  | 0.05                             | 0.3509     | 1.16  | 0.1153       | 0.64  | 1884                            | 11 1939 19 |
| n3450-10a                                                                    | wk zon bands        |                         | 43   | 103  | 0.29            | 73 561  | 0.03                             | 0.3459     | 1.09  | 0.1157       | 0.58  | 1891                            | 10 1915 18 |
| n3450-11a                                                                    | wk zon bands        | inclusion               | 56   | 132  | 0.29            | 48 447  | 0.04                             | 0.3537     | 1.13  | 0.1159       | 0.49  | 1895                            | 9 1952 19  |
| n3450-11b                                                                    | wk zon bands        |                         | 81   | 195  | 0.35            | 182 975 | 0.01                             | 0.3428     | 1.06  | 0.1163       | 0.44  | 1900                            | 8 1900 18  |
| n3450-12a                                                                    | uz core             |                         | 35   | 85   | 0.25            | 59 478  | 0.03                             | 0.3440     | 1.09  | 0.1152       | 0.60  | 1882                            | 11 1906 18 |
| n3450-13a                                                                    | osc zon             | cracked, epoxy          | 141  | 469  | 0.24            | 2223    | 0.84                             | 0.2486     | 1.10  | 0.1131       | 0.54  | 1850                            | 10 1431 14 |
| n3450-14a                                                                    | uz core             | cracked                 | 51   | 146  | 0.22            | 52 445  | 0.04                             | 0.2955     | 1.40  | 0.1152       | 0.49  | 1883                            | 9 1669 21  |
| n3450-15a                                                                    | wk osc zon          | cracked, crystal margin | 156  | 419  | 0.37            | 15 215  | 0.12                             | 0.3013     | 1.08  | 0.1146       | 0.38  | 1874                            | 7 1698 16  |
| n3450-16a                                                                    | osc zon             | crystal margin          | 269  | 800  | 0.37            | 37 558  | 0.05                             | 0.2716     | 1.07  | 0.1122       | 0.28  | 1835                            | 5 1549 15  |
| n3450-17a                                                                    | wk osc zon          | cracked                 | 107  | 264  | 0.37            | 75 986  | 0.02                             | 0.3318     | 1.06  | 0.1161       | 0.42  | 1897                            | 7 1847 17  |
| n3450-18a                                                                    | wk osc zon          | cracked                 | 191  | 471  | 0.48            | 44 536  | 0.04                             | 0.3209     | 1.06  | 0.1160       | 0.34  | 1895                            | 6 1794 17  |
| n3450-19a                                                                    | wk osc zon          |                         | 65   | 156  | 0.35            | 68 554  | 0.03                             | 0.3391     | 1.07  | 0.1160       | 0.50  | 1896                            | 9 1883 17  |
| n3450-20a                                                                    | wk osc zon          | inclusion               | 58   | 159  | 0.24            | 8383    | 0.22                             | 0.3053     | 1.06  | 0.1140       | 0.56  | 1864                            | 10 1717 16 |
| n3450-21a                                                                    | osc zon             | cracked, inclusion      | 163  | 458  | 0.39            | 34 098  | 0.05                             | 0.2857     | 1.24  | 0.1154       | 0.32  | 1886                            | 6 1620 18  |
| n3450-22a                                                                    | wk osc zon          | cracked                 | 103  | 366  | 0.24            | 12 084  | 0.15                             | 0.2312     | 1.32  | 0.1150       | 0.49  | 1880                            | 9 1341 16  |
| n3450-23a                                                                    | wk osc zon          | cracked                 | 63   | 182  | 0.30            | 6926    | 0.27                             | 0.2835     | 1.12  | 0.1148       | 0.55  | 1877                            | 10 1609 16 |
| n3450-24a                                                                    | alt core            | cracked                 | 921  | 2180 | 0.50            | 77 295  | 0.02                             | 0.3345     | 1.06  | 0.1158       | 0.14  | 1892                            | 2 1860 17  |
| n3450-25a                                                                    | wk osc zon          |                         | 138  | 326  | 0.40            | 66 439  | 0.03                             | 0.3439     | 1.08  | 0.1149       | 0.35  | 1878                            | 6 1906 18  |
| n3450-26a                                                                    | uz core             | cracked                 | 471  | 1197 | 0.49            | 69 290  | 0.03                             | 0.3102     | 1.12  | 0.1150       | 0.25  | 1890                            | 5 1742 17  |

## New zircon data supporting models of short-lived igneous activity at 1.89 Ga

P. Skyttä et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures



Full Screen / Esc

Printer-friendly Version

Interactive Discussion

**Table 1.** Continued.

| Sample <sup>a/</sup><br>spot #                                                                               | Analysed area          |                    | [Pb] | [U]  | Th <sup>b</sup> | <sup>206</sup> Pb | <sup>f</sup> <sup>206</sup> Pb <sup>c</sup> | Ratios $\pm \sigma$ |                   | Age $\pm \sigma$ (Ma) |                   | Disc. %<br>2 $\sigma$ lim. <sup>d</sup> |    |      |    |       |
|--------------------------------------------------------------------------------------------------------------|------------------------|--------------------|------|------|-----------------|-------------------|---------------------------------------------|---------------------|-------------------|-----------------------|-------------------|-----------------------------------------|----|------|----|-------|
|                                                                                                              | textural domain        | location           | ppm  | ppm  | U               | <sup>204</sup> Pb | %                                           | <sup>238</sup> U    | <sup>206</sup> Pb | <sup>207</sup> Pb     | <sup>206</sup> Pb |                                         |    |      |    |       |
|                                                                                                              |                        |                    |      |      |                 |                   |                                             |                     |                   |                       | <sup>206</sup> Pb | <sup>238</sup> U                        |    |      |    |       |
| <b>Sample III: Viterilden quartz-plagioclase porphyritic tonalite (coarse “mine-porphyry”; 29.1-pmsk-08)</b> |                        |                    |      |      |                 |                   |                                             |                     |                   |                       |                   |                                         |    |      |    |       |
| n3449-01a                                                                                                    | uz                     | cracked            | 127  | 343  | 0.21            | 6818              | 0.27                                        | 0.3147              | 1.11              | 0.1153                | 0.64              | 1884                                    | 11 | 1764 | 17 | -3.7  |
| n3449-02a                                                                                                    | osc zon                |                    | 237  | 573  | 0.27            | 65615             | 0.03                                        | 0.3473              | 1.11              | 0.1155                | 0.23              | 1888                                    | 4  | 1922 | 18 |       |
| n3449-03a                                                                                                    | osc zon                |                    | 164  | 406  | 0.23            | 87815             | 0.02                                        | 0.3415              | 1.11              | 0.1151                | 0.28              | 1882                                    | 5  | 1894 | 18 |       |
| n3449-04a                                                                                                    | osc zon                |                    | 159  | 397  | 0.22            | 33500             | 0.06                                        | 0.3396              | 1.10              | 0.1160                | 0.30              | 1895                                    | 5  | 1885 | 18 |       |
| n3449-05a                                                                                                    | uz core                | cracked            | 237  | 580  | 0.63            | 4554              | 0.41                                        | 0.3116              | 1.15              | 0.1151                | 0.36              | 1882                                    | 6  | 1748 | 18 | -5.4  |
| n3449-06a                                                                                                    | osc zon                | cracked            | 287  | 762  | 0.32            | 9097              | 0.21                                        | 0.3095              | 1.45              | 0.1159                | 0.30              | 1894                                    | 5  | 1738 | 22 | -6.4  |
| n3449-07a                                                                                                    | osc zon                | epoxy              | 160  | 528  | 0.16            | 2936              | 0.64                                        | 0.2584              | 1.78              | 0.1138                | 0.47              | 1860                                    | 9  | 1481 | 24 | -19.3 |
| n3449-08a                                                                                                    | osc zon                | margin             | 303  | 831  | 0.31            | 7942              | 0.24                                        | 0.2998              | 1.11              | 0.1140                | 0.26              | 1865                                    | 5  | 1690 | 16 | -8.3  |
| n3449-08b                                                                                                    | osc zon                |                    | 253  | 617  | 0.29            | 62164             | 0.03                                        | 0.3421              | 1.07              | 0.1154                | 0.26              | 1886                                    | 5  | 1897 | 18 |       |
| n3449-09a                                                                                                    | wk osc zon             |                    | 141  | 356  | 0.19            | 69422             | 0.03                                        | 0.3380              | 1.10              | 0.1158                | 0.30              | 1892                                    | 5  | 1877 | 18 |       |
| n3449-10a                                                                                                    | osc zon                |                    | 239  | 594  | 0.28            | 17957             | 0.10                                        | 0.3355              | 1.06              | 0.1156                | 0.35              | 1890                                    | 6  | 1865 | 17 |       |
| n3449-11a                                                                                                    | alt osc zon            | cracked            | 206  | 1019 | 0.12            | 1650              | 1.13                                        | 0.1714              | 1.35              | 0.1160                | 0.75              | 1895                                    | 13 | 1020 | 13 | -46.0 |
| n3449-12a                                                                                                    | osc zon                | cracked            | 216  | 556  | 0.25            | 12574             | 0.15                                        | 0.3263              | 1.08              | 0.1155                | 0.29              | 1887                                    | 5  | 1820 | 17 | -1.6  |
| n3449-13a                                                                                                    | osc zon                | cracked            | 293  | 775  | 0.25            | 10292             | 0.18                                        | 0.3177              | 1.07              | 0.1151                | 0.25              | 1882                                    | 5  | 1778 | 17 | -4.0  |
| n3449-14a                                                                                                    | osc zon                | epoxy              | 239  | 644  | 0.17            | 3173              | 0.59                                        | 0.3175              | 1.10              | 0.1154                | 0.40              | 1886                                    | 7  | 1778 | 17 | -3.8  |
| n3449-15a                                                                                                    | uz                     | cracked            | 137  | 402  | 0.15            | 5806              | 0.32                                        | 0.2923              | 1.06              | 0.1151                | 0.44              | 1882                                    | 8  | 1653 | 15 | -11.1 |
| n3449-16a                                                                                                    | osc zon                | epoxy, cracked     | 179  | 639  | 0.13            | 2513              | 0.74                                        | 0.2392              | 1.32              | 0.1144                | 0.55              | 1871                                    | 10 | 1383 | 16 | -25.8 |
| n3449-17a                                                                                                    | wk osc zon             | cracked            | 201  | 535  | 0.23            | 79531             | 0.02                                        | 0.3157              | 1.06              | 0.1150                | 0.27              | 1879                                    | 5  | 1769 | 16 | -4.4  |
| n3449-18a                                                                                                    | osc zon                | slightly cracked   | 235  | 595  | 0.22            | 10743             | 0.17                                        | 0.3335              | 1.06              | 0.1160                | 0.34              | 1896                                    | 6  | 1856 | 17 |       |
| n3449-19a                                                                                                    | osc zon                | margin             | 268  | 661  | 0.36            | 12333             | 0.15                                        | 0.3327              | 1.06              | 0.1152                | 0.32              | 1883                                    | 6  | 1851 | 17 |       |
| n3449-20a                                                                                                    | wk osc zon             |                    | 197  | 491  | 0.20            | 259299            | 0.01                                        | 0.3423              | 1.07              | 0.1161                | 0.27              | 1897                                    | 5  | 1898 | 18 |       |
| n3449-21a                                                                                                    | alt osc zon            | cracked            | 240  | 626  | 0.25            | 4684              | 0.40                                        | 0.3216              | 1.66              | 0.1149                | 0.31              | 1879                                    | 6  | 1797 | 26 | -1.5  |
| n3449-22a                                                                                                    | osc zon                | cracked            | 204  | 545  | 0.23            | 12079             | 0.15                                        | 0.3150              | 1.10              | 0.1160                | 0.28              | 1896                                    | 5  | 1765 | 17 | -5.5  |
| n3449-23a                                                                                                    | osc zon                | inclusion          | 254  | 875  | 0.20            | 3506              | 0.53                                        | 0.2432              | 1.14              | 0.1155                | 0.31              | 1888                                    | 5  | 1403 | 14 | -26.4 |
| n3449-24a                                                                                                    | osc zon                | slightly cracked   | 182  | 470  | 0.22            | 27240             | 0.07                                        | 0.3283              | 1.06              | 0.1154                | 0.37              | 1886                                    | 7  | 1830 | 17 | -0.7  |
| n3449-25a                                                                                                    | osc zon                | inclusion, cracked | 268  | 765  | 0.25            | 4358              | 0.43                                        | 0.2917              | 1.12              | 0.1157                | 0.29              | 1890                                    | 5  | 1650 | 16 | -12.1 |
| n3449-26a                                                                                                    | osc zon                | cracked            | 160  | 406  | 0.25            | 7382              | 0.25                                        | 0.3300              | 1.06              | 0.1162                | 0.38              | 1898                                    | 7  | 1839 | 17 | -1.0  |
| <b>Sample IV: Kristineberg hanging wall Rhyolite (60.1-pmsk-09)</b>                                          |                        |                    |      |      |                 |                   |                                             |                     |                   |                       |                   |                                         |    |      |    |       |
| n3447-01a                                                                                                    | uz core                | cracked            | 149  | 338  | 0.43            | 33819             | 0.06                                        | 0.3570              | 1.19              | 0.1158                | 0.60              | 1893                                    | 11 | 1968 | 20 | 0.8   |
| n3447-02a                                                                                                    | uz eu tip              |                    | 69   | 163  | 0.29            | 8237              | 0.23                                        | 0.3564              | 1.10              | 0.1147                | 0.67              | 1875                                    | 12 | 1965 | 19 | 1.7   |
| n3447-03a                                                                                                    | uz outer               | margin             | 29   | 91   | 0.17            | 1779              | 1.05                                        | 0.2704              | 1.11              | 0.1112                | 1.34              | 1820                                    | 24 | 1543 | 15 | -10.7 |
| n3447-04a                                                                                                    | uz eu tip              | margin             | 98   | 284  | 0.29            | 3271              | 0.57                                        | 0.2838              | 1.32              | 0.1127                | 0.71              | 1844                                    | 13 | 1611 | 19 | -10.3 |
| n3447-04b                                                                                                    | uz core/tip            | cracked            | 136  | 325  | 0.40            | 13230             | 0.14                                        | 0.3414              | 1.11              | 0.1151                | 0.43              | 1881                                    | 8  | 1894 | 18 |       |
| n3447-05a                                                                                                    | uz inner               | cracked            | 111  | 484  | 0.21            | 33918             | 0.06                                        | 0.1868              | 1.09              | 0.1154                | 0.45              | 1885                                    | 8  | 1104 | 11 | -42.6 |
| n3447-05b                                                                                                    | uz outer               | epoxy              | 41   | 164  | 0.12            | 1129              | 1.66                                        | 0.2181              | 1.26              | 0.1055                | 2.15              | 1723                                    | 39 | 1272 | 15 | -18.5 |
| n3447-06a                                                                                                    | uw wk zon inner domain | inclusion, cracked | 119  | 266  | 0.39            | 34719             | 0.05                                        | 0.3665              | 1.12              | 0.1153                | 0.45              | 1884                                    | 8  | 2013 | 19 | 4.7   |
| n3447-07a                                                                                                    | uz uz                  |                    | 122  | 278  | 0.36            | 24422             | 0.08                                        | 0.3627              | 1.11              | 0.1155                | 0.45              | 1887                                    | 8  | 1995 | 19 | 3.5   |
| n3447-08a                                                                                                    | uz inner domain        | cracked            | 137  | 315  | 0.42            | 23710             | 0.08                                        | 0.3528              | 1.11              | 0.1149                | 0.52              | 1878                                    | 9  | 1948 | 19 | 1.0   |
| n3447-09a                                                                                                    | uw wk zon inner domain |                    | 35   | 83   | 0.24            | 10833             | 0.17                                        | 0.3595              | 1.19              | 0.1134                | 0.86              | 1854                                    | 15 | 1980 | 20 | 3.1   |
| n3447-09b                                                                                                    | uw wk zon inner domain |                    | 72   | 165  | 0.30            | 29061             | 0.06                                        | 0.3633              | 1.11              | 0.1149                | 0.63              | 1879                                    | 11 | 1998 | 19 | 3.6   |
| n3447-10a                                                                                                    | uw wk zon tip          | epoxy              | 49   | 126  | 0.23            | 1183              | 1.58                                        | 0.3340              | 1.11              | 0.1067                | 1.48              | 1744                                    | 27 | 1858 | 18 |       |
| n3447-10b                                                                                                    | uw wk zon inner domain |                    | 77   | 182  | 0.30            | 21703             | 0.09                                        | 0.3521              | 1.10              | 0.1144                | 0.61              | 1870                                    | 11 | 1945 | 19 | 1.0   |
| n3447-11a                                                                                                    | uw wk zon inner domain |                    | 49   | 116  | 0.26            | 12974             | 0.14                                        | 0.3585              | 1.13              | 0.1151                | 0.86              | 1882                                    | 15 | 1975 | 19 | 1.1   |
| n3447-12a                                                                                                    | eu uz                  | cracked            | 94   | 220  | 0.38            | 14732             | 0.13                                        | 0.3470              | 1.11              | 0.1161                | 0.59              | 1897                                    | 11 | 1920 | 18 |       |
| n3447-13a                                                                                                    | uz fragment            |                    | 100  | 236  | 0.32            | 5761              | 0.32                                        | 0.3527              | 1.10              | 0.1147                | 0.71              | 1875                                    | 13 | 1948 | 18 | 0.5   |
| n3447-14a                                                                                                    | eu uz fragm            | cracked            | 58   | 143  | 0.36            | 7551              | 0.25                                        | 0.3292              | 1.10              | 0.1150                | 0.76              | 1879                                    | 14 | 1834 | 18 |       |
| n3447-15a                                                                                                    | uz                     | margin             | 45   | 170  | 0.18            | 10873             | 0.17                                        | 0.2240              | 1.11              | 0.1143                | 1.14              | 1869                                    | 20 | 1303 | 13 | -28.0 |
| n3447-16a                                                                                                    | uz                     | margin             | 37   | 92   | 0.20            | 3120              | 0.60                                        | 0.3466              | 1.10              | 0.1115                | 1.15              | 1824                                    | 21 | 1919 | 18 | 0.0   |
| n3447-17a                                                                                                    | uz tip                 | inclusion, margin  | 83   | 204  | 0.37            | 3260              | 0.57                                        | 0.3337              | 1.12              | 0.1147                | 0.67              | 1875                                    | 12 | 1856 | 18 |       |
| n3447-18a                                                                                                    | uz                     |                    | 101  | 231  | 0.42            | 12187             | 0.15                                        | 0.3561              | 1.11              | 0.1138                | 0.64              | 1862                                    | 12 | 1964 | 19 | 2.5   |
| n3447-19a                                                                                                    | uz                     | margin             | 74   | 189  | 0.31            | 8919              | 0.21                                        | 0.3260              | 1.17              | 0.1153                | 0.73              | 1885                                    | 13 | 1819 | 19 |       |
| n3447-20a                                                                                                    | uz                     | epoxy, cracked     | 155  | 494  | 0.34            | 899               | 2.08                                        | 0.2569              | 1.34              | 0.1040                | 2.19              | 1697                                    | 40 | 1474 | 18 | -4.0  |

## New zircon data supporting models of short-lived igneous activity at 1.89 Ga

P. Skyttä et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

◀

▶

◀

▶

Back

Close

Full Screen / Esc

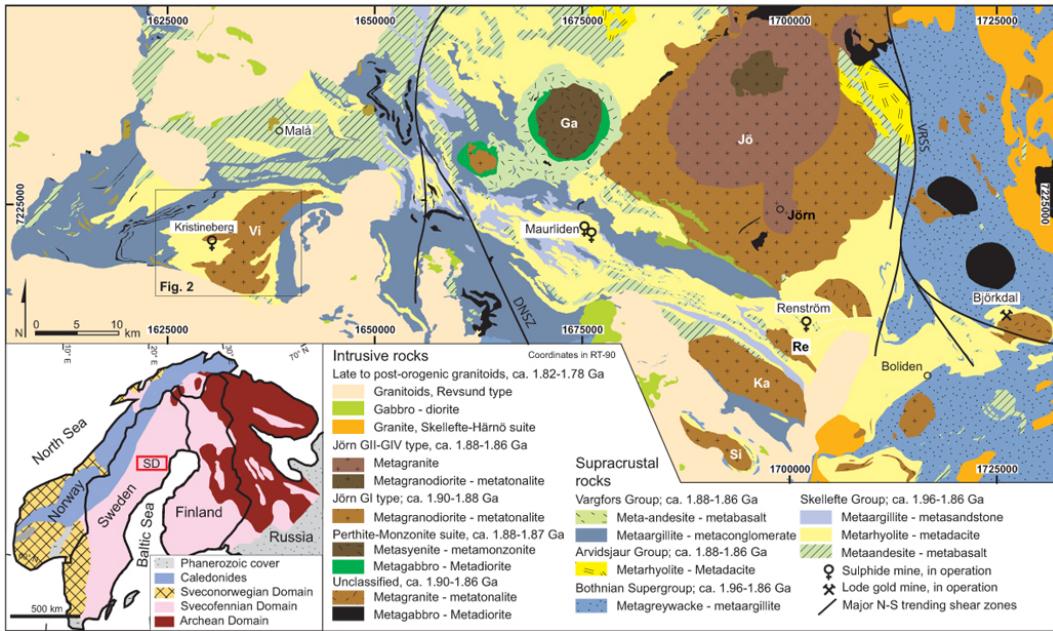
Printer-friendly Version

Interactive Discussion

**Table 1.** Continued.

| Sample <sup>a</sup> / spot # | Analysed area       |                           | [Pb]<br>ppm | [U]<br>ppm | Th <sup>b</sup><br>U | $^{206}\text{Pb}$<br>$^{204}\text{Pb}$ | $f^{206}\text{Pb}^c$<br>% | Ratios $\pm \sigma$                   |                                        |                                        | Age $\pm \sigma$ (Ma)                 |                                       |    | Disc. %<br>$2\sigma$ lim. <sup>d</sup> |     |
|------------------------------|---------------------|---------------------------|-------------|------------|----------------------|----------------------------------------|---------------------------|---------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|----|----------------------------------------|-----|
|                              | textural domain     | location                  |             |            |                      |                                        |                           | $^{206}\text{Pb}$<br>$^{238}\text{U}$ | $^{207}\text{Pb}$<br>$^{206}\text{Pb}$ | $^{207}\text{Pb}$<br>$^{206}\text{Pb}$ | $^{206}\text{Pb}$<br>$^{238}\text{U}$ | $^{206}\text{Pb}$<br>$^{238}\text{U}$ |    |                                        |     |
| n3447-21a                    | uz                  | cracked                   | 116         | 277        | 0.36                 | 24 060                                 | 0.08                      | 0.3459                                | 1.09                                   | 0.1140                                 | 0.53                                  | 1864                                  | 10 | 1915                                   | 18  |
| n3447-22a                    | uz                  | cracked                   | 48          | 119        | 0.22                 | 5157                                   | 0.36                      | 0.3443                                | 1.21                                   | 0.1144                                 | 0.88                                  | 1870                                  | 16 | 1907                                   | 20  |
| n3447-23a                    | uz inner domain     | cracked                   | 65          | 156        | 0.28                 | 5497                                   | 0.34                      | 0.3473                                | 1.09                                   | 0.1154                                 | 0.81                                  | 1886                                  | 15 | 1922                                   | 18  |
| n3447-24a                    | uz inner domain     | <i>inclusion, cracked</i> | 111         | 344        | 0.36                 | 8670                                   | 0.22                      | 0.2580                                | 1.46                                   | 0.1144                                 | 0.52                                  | 1871                                  | 9  | 1480                                   | 19  |
| n3447-25a                    | uz outer domain     | cracked                   | 122         | 273        | 0.50                 | 7691                                   | 0.24                      | 0.3596                                | 1.14                                   | 0.1146                                 | 0.55                                  | 1874                                  | 10 | 1980                                   | 19  |
| n3447-26a                    | wk zon outer domain | margin                    | 53          | 390        | 0.11                 | 6713                                   | 0.28                      | 0.1136                                | 2.88                                   | 0.1138                                 | 0.75                                  | 1861                                  | 13 | 694                                    | 19  |
| n3447-27a                    | eu uz inner domain  | cracked                   | 139         | 316        | 0.41                 | 19 640                                 | 0.10                      | 0.3590                                | 1.25                                   | 0.1149                                 | 0.44                                  | 1878                                  | 8  | 1977                                   | 21  |
| n3447-28a                    | uz inner domain     | cracked                   | 46          | 110        | 0.27                 | 3302                                   | 0.57                      | 0.3553                                | 1.14                                   | 0.1133                                 | 0.84                                  | 1853                                  | 15 | 1960                                   | 19  |
| n3447-29a                    | uz                  | epoxy                     | 72          | 176        | 0.22                 | 46 998                                 | 0.04                      | 0.3451                                | 1.10                                   | 0.1156                                 | 0.92                                  | 1890                                  | 16 | 1911                                   | 18  |
| n3447-30a                    | uz inner domain     | <i>inclusion, cracked</i> | 97          | 228        | 0.40                 | 13 042                                 | 0.14                      | 0.3456                                | 1.15                                   | 0.1150                                 | 0.57                                  | 1880                                  | 10 | 1914                                   | 19  |
| n3447-31a                    | eu uz               | margin                    | 52          | 204        | 0.19                 | 1064                                   | 1.76                      | 0.2210                                | ###                                    | 0.0936                                 | 5.18                                  | 1501                                  | 95 | 1287                                   | 138 |
| n3447-32a                    | wk zon inner domain | margin                    | 113         | 267        | 0.29                 | 35 983                                 | 0.05                      | 0.3542                                | 1.10                                   | 0.1162                                 | 0.54                                  | 1898                                  | 10 | 1955                                   | 19  |
| n3447-32b                    | wk zon inner domain |                           | 121         | 299        | 0.23                 | 54 511                                 | 0.03                      | 0.3409                                | 1.09                                   | 0.1161                                 | 0.47                                  | 1897                                  | 8  | 1891                                   | 18  |

<sup>a</sup> Data used for age calculation shown with normal letters; data in italics have been excluded from age calculation.


<sup>b</sup> Th/U ratios calculated from  $^{208}\text{Pb}/^{206}\text{Pb}$  ratios corrected for common Pb.

<sup>c</sup> % of common  $^{206}\text{Pb}$  in measured  $^{206}\text{Pb}$ , estimated from  $^{204}\text{Pb}$  assuming a present day Stacey and Kramers (1975) model.

<sup>d</sup> Degree of discordance; positive numbers are reverse discordant. Blanks indicate that analysis is concordant within  $2\sigma$  error. Abbreviations: zon = zonation, osc = oscillatory, wk = weak, uz = unzoned, eu = euhedral crystal, alt = altered.

## New zircon data supporting models of short-lived igneous activity at 1.89 Ga

P. Skyttä et al.



[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

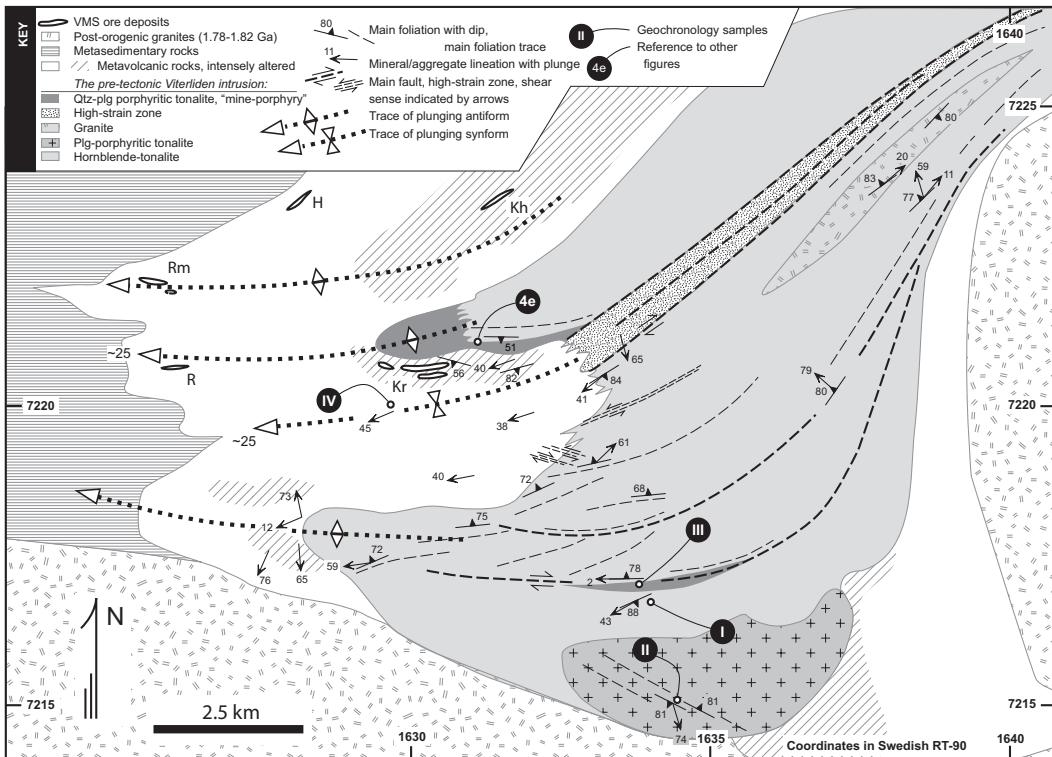
▶

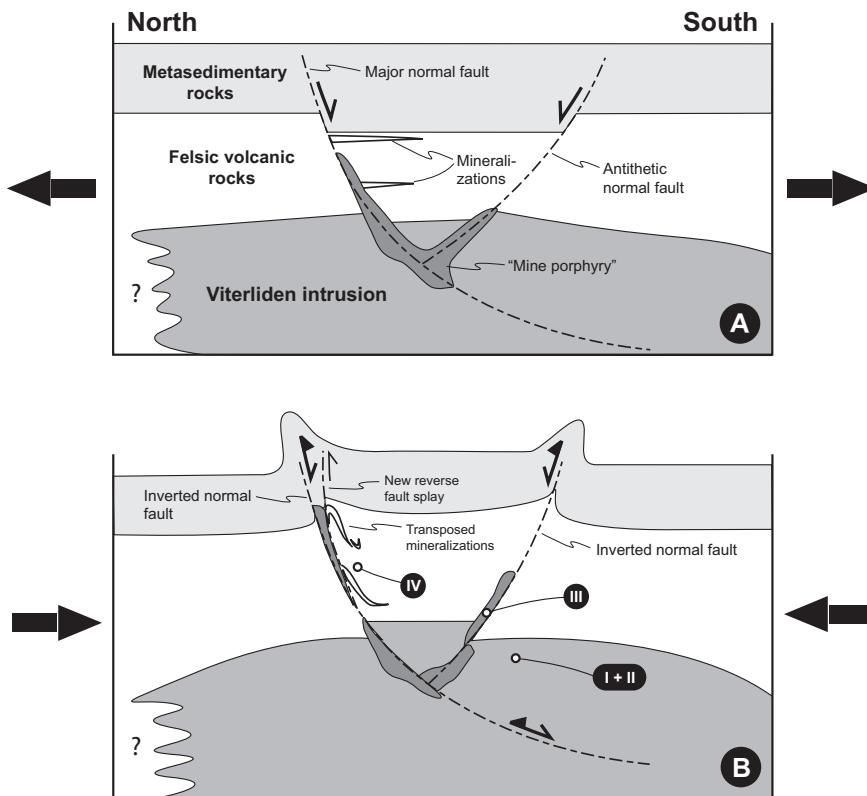
◀

▶

Back

Close


[Full Screen / Esc](#)

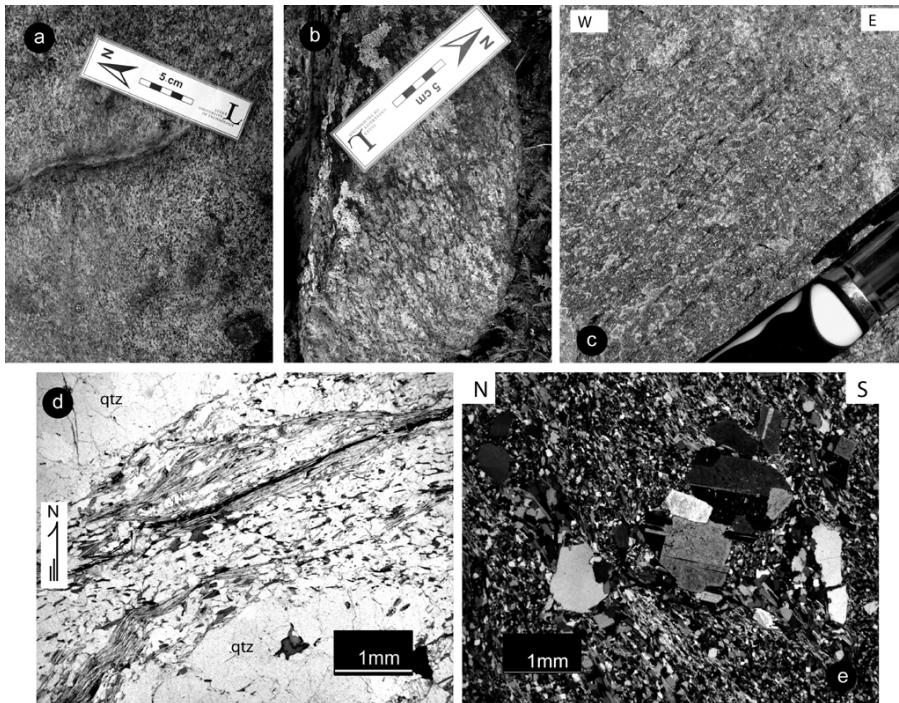

[Printer-friendly Version](#)

[Interactive Discussion](#)

## New zircon data supporting models of short-lived igneous activity at 1.89 Ga

P. Skyttä et al.






**Fig. 3.** Schematic stratigraphic profile across the Kristineberg area including the location of the geochronology samples. Upper mineralized horizon = Hornträsk-Rävlidsmyran-Rävliden, lower mineralized horizon = Kristineberg-Kimheden. Metasedimentary and metavolcanic rocks belong to the Vargfors and the Skellefte Groups, respectively. **(A)** Syn-extensional volcanism, mineralization, sedimentation  $\pm$  intrusive activity at  $\sim 1.89$ – $1.87$  Ga. **(B)** Subsequent crustal shortening leading to basin inversion and related transposition of the mineralized horizons.

380

New zircon data  
supporting models of  
short-lived igneous  
activity at 1.89 Ga

P. Skyttä et al.



**Fig. 4.** Field and microphotographs of the dated rock units. See Fig. 2 for locations. **(a)** Viterliden hornblende-tonalite; geochronology sample I, **(b)** Viterliden plagioclase porphyritic tonalite; geochronology sample II, **(c)** Kristineberg hanging-wall rhyolite; geochronology sample IV; vertical section, width of view ~5 cm, **(d)** Viterliden quartz-plagioclase porphyritic tonalite (coarse “mine porphyry”); geochronology sample III and **(e)** quartz-plagioclase porphyritic tonalite (“mine porphyry”).

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

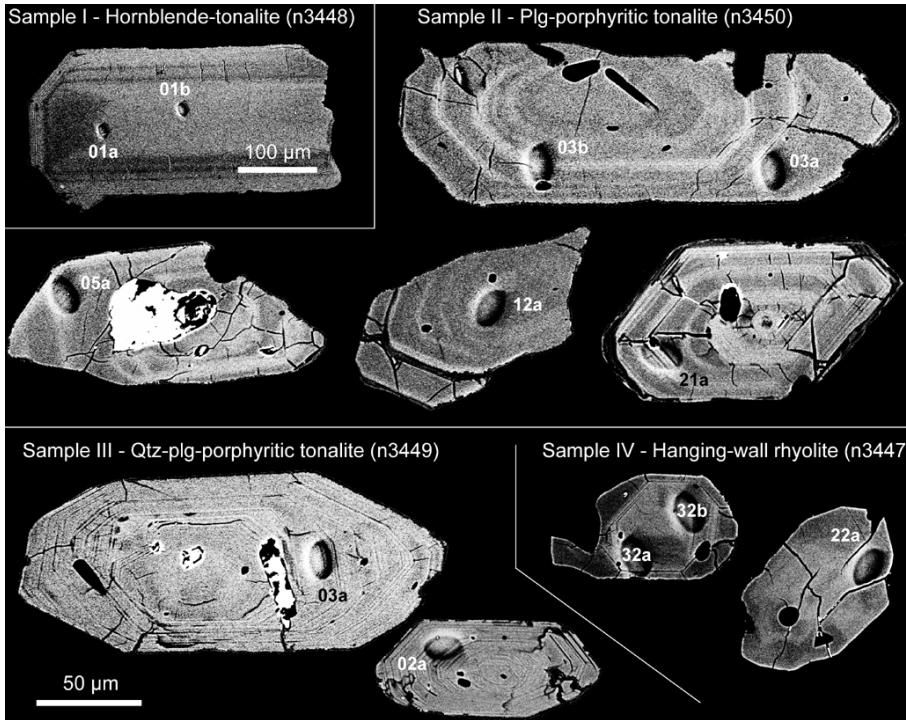
[▶](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)


[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

New zircon data  
supporting models of  
short-lived igneous  
activity at 1.89 Ga

P. Skyttä et al.



**Fig. 5.** BSE images for selected ion microprobe-dated zircons. Site of analyses are indicated by analyze number, see also Table 1. Note the different scale in n3448-01ab. Qtz = quartz, plg = plagioclase.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

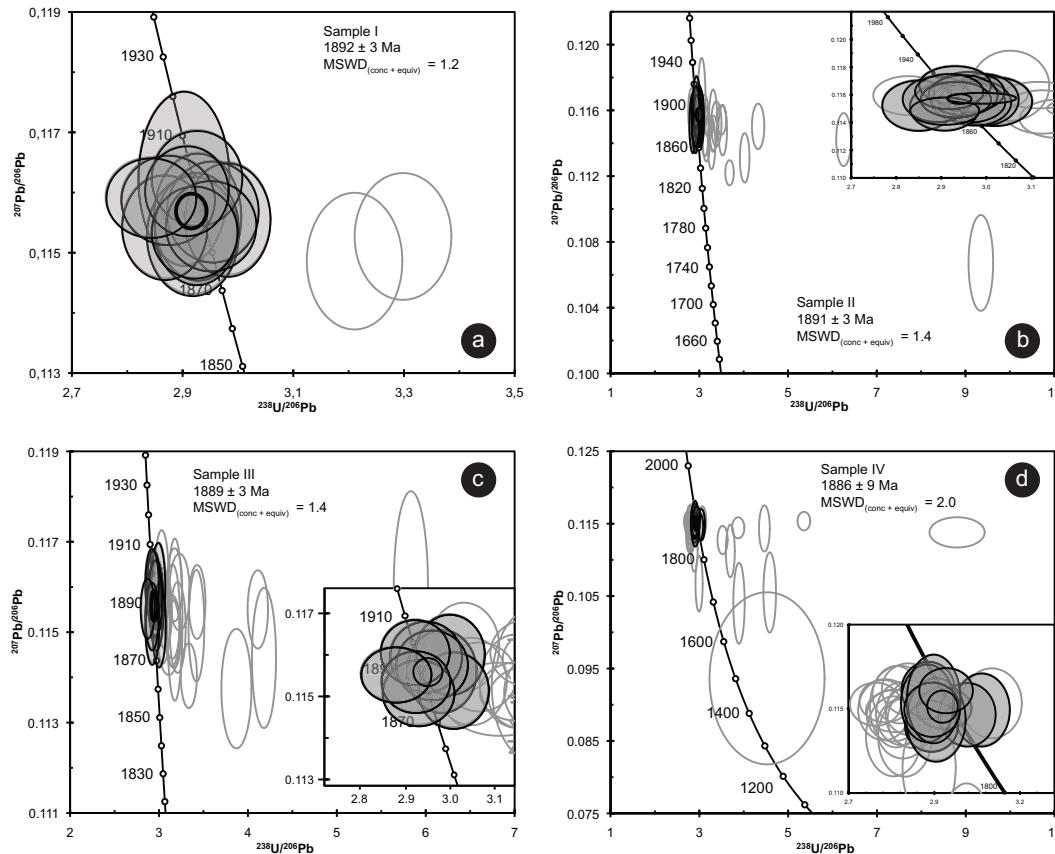
▶

◀

▶

[Back](#)

[Close](#)


[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

**New zircon data  
supporting models of  
short-lived igneous  
activity at 1.89 Ga**

P. Skyttä et al.



**Fig. 6.** Concordia diagrams for the dated rock units. **(a)** Sample I: Viterliden hornblende-tonalite (47.1-pmsk-09), **(b)** Sample II: Viterliden plagioclase porphyritic tonalite (33.1-pmsk-08), **(c)** Sample III: Viterliden quartz-plagioclase porphyritic tonalite (coarse “mine porphyry”; 29.1-pmsk-08), **(d)** Sample IV: Kristineberg hanging-wall rhyolite (60.1-pmsk-09).

**Title Page**

**Abstract**

**Introduction**

**Conclusions**

**References**

**Tables**

**Figures**

◀

▶

◀

▶

**Close**

**Full Screen / Esc**

**Printer-friendly Version**

**Interactive Discussion**